Dealing with Missing Data

Andrew Miles

University of Toronto Social Science Research Methods week, 2018

Mechanisms of Missingness

- MCAR missing completely at random
 - no pattern to the missingness
- MAR missing at random
 - missingness depends on variables you have in your model
- MNAR missing not at random
 - missingness tied to values of the outcome
 - (indirect) missingness tied to variables not in the model

Years of Education	Political ideology	Poli Ideology (MCAR)
9	9	9
9	4	4
9	6	
11	5	
11	8	8
12	2	2
12	5	5
14	6	6
15	7	

Years of Education	Political ideology	Poli Ideology (MCAR)	Poli Ideology (MAR)
9	9	9	9
9	4	4	
9	6		
11	5		5
11	8	8	
12	2	2	2
12	5	5	5
14	6	6	6
15	7		7

Years of Education	Political ideology	Poli Ideology (MCAR)	Poli Ideology (MAR)	Poli Ideology (MNAR)
9	9	9	9	9
9	4	4		
9	6			6
11	5		5	
11	8	8		8
12	2	2	2	2
12	5	5	5	
14	6	6	6	6
15	7		7	7

Why missingness is a problem

	MCAR	MAR	MNAR
larger SEs	X	X	X
biased estimates		X	X

$$\bar{y} = 5.78$$

$$\overline{y}_{MCAR} = 5.83$$

$$\overline{y}_{MAR} = 5.67$$

$$\overline{y}_{MNAR} = 6.33$$

Methods for Handling Missing Data

- In the past...
 - most often: listwise deletion (still the default)
 - mean imputation, regression imputation
- Widespread consensus that two techniques are currently state-of-the-art
 - Maximum Likelihood (or Full Information ML)
 - Multiple Imputation (MI)

Comparing the two methods

- Both rely on MAR assumption*
- asymptotically equivalent
- FIML
 - generally simpler to use, consistent results across runs, BUT
 - only available for continuous (outcome) data
 - only implemented in structural equation modeling software
- focus will be on multiple imputation

Basic Ideas of MI

Basic Ideas of MI

X	X _{miss}
1	•
2	2
3	•
4	4
$\overline{x} = 2.5$	$\overline{x} = 3.0$

X	X _{miss}	X _{MI1}	X _{MI2}
1	•	2	0
2	2	2	2
3	•	2	4
4	4	4	4
$\overline{x} = 2.5$	$\overline{x} = 3.0$	$\overline{x} = 2.5$	$\overline{x} = 2.5$

Imputation phase: How MI makes up good values

In essence, MI uses information from other variables in your data to come up with plausible values

Imputation phase: How MI makes up good values

Why not use just one imputation?

- unbiased
- SE's too small
 - misses uncertainty due to missingness
- multiple imputed values reintroduces uncertainty due to missingness

Analysis Phase

imputed 1 data 1

imputed data 2

imputed data 3

$$\overline{y}_1 = \sum_{n=1}^{\infty} y_1 / n$$

$$\overline{y}_1 = \sum_{n} y_1 / n \qquad \overline{y}_2 = \sum_{n} y_2 / n \qquad \overline{y}_3 = \sum_{n} y_3 / n$$

$$\overline{y}_3 = \frac{\sum y_3}{n}$$

$$\overline{y}_1 = 2$$

$$\bar{y}_2 = 2.1$$

$$\bar{y}_3 = 1.9$$

Pooling Phase

take the mean of the *m* estimates

$$\overline{y}_1 = 2$$

$$\bar{y}_2 = 2.1$$
 $\bar{y}_3 = 1.9$

$$\bar{y}_3 = 1.9$$

$$\overline{y}_{pooled} = 2$$

Pooling Phase

works the same with regression coefficients

$$\beta_{m=1} = 0.4$$
 $\beta_{m=2} = 0.3$
 $\beta_{m=3} = 0.45$
 $\beta_{pooled} = (0.4 + 0.3 + 0.45)/3$
 $\beta_{pooled} = 0.38$

Pooling Phase: Standard Errors

- two sources of uncertainty
 - within imputations
 - between imputations

Within imputation variance

 Within imputation variance = mean of variances in each imputation

$$V_W = \frac{1}{m} \sum_{t=1}^m SE_t^2$$

Between imputation variance

- uncertainty due to missing data
- between imputation variance = variance of estimated statistics from the *m* analyses

$$V_B = \frac{1}{m-1} \sum_{t=1}^{m} \left[\hat{\beta}_t - \overline{\beta} \right]^2 \quad \text{all models}$$

$$\beta \text{ from est}$$

average β across

 β from estimation using data set t

Total Sampling Variance

$$V_T = V_W + V_B + \frac{V_B}{m}$$
 adjusts for estimation using finite number of

adjusts for imputations

$$SE = \sqrt{V_T}$$

Exercise: Calculate β and SE_{β} by hand

• Below is a table with regression results in each of 5 imputed data sets – calculate the pooled MI estimates of β and SE_{β}

m	Variable	Estimate	S.E.
1	Income	.061	.022
2	Income	.033	.009
3	Income	.045	.012
4	Income	.071	.028
5	Income	.055	.015

$$V_W = \frac{1}{m} \sum_{t=1}^m SE_t^2$$

$$V_B = \frac{1}{m-1} \sum_{t=1}^{m} \left(\hat{\beta}_t - \overline{\beta} \right)^2$$

$$V_T = V_W + V_B + \frac{V_B}{m}$$

R CODE

beta=c(.061, .033, .045, .071, .055) se=c(.022, .009, .012, .028, .015)

#MI point estimate mean(beta)

#MI standard error

v.within=mean(se^2)

v.between=var(beta)

v.total=v.within+v.between+

(v.between/5)

sqrt(v.total)

RESULTS

 β =.053

 $SE_{B} = .025$

STATA CODE

input beta beta_se

.061 .022

.033 .009

.045 .012

.071 .028

.055 .015

v between/5

di sqrt(v_total)

end

/*MI point estimate*/
mean beta

/*MI standard error*/
gen se_sq = beta_se^2
su se_sq, d
scalar v_within = r(mean)
su beta, d
scalar v_between = r(Var)
scalar v_total = v_within + v_between +

Two Major Approaches to MI

- Assume multivariate normal data (MVN)
 - often what people refer to when they talk about "multiple imputation"
- Allow data types to vary (ordinal, binary, etc.)
 - called "multiple imputation by chained equations", aka MICE
 - or fully conditional specification (FCS)

Comparing the two MI methods

- MVN has a solid theoretical basis
- MICE does not, but it has considerable intuitive appeal
- In practice...
 - both tend to give comparable results*
 - MVN tends to be faster
 - but MVN might not converge with many noncontinuous/normal variables

MVN imputation

- today we will focus on MVN imputation
- focus on data augmentation

	Stata	R	SPSS
MVN	mi mvn	Amelia; norm	N/A
MICE	mi chained	mi; mice	multiple imputation

MVN imputation – data augmentation

$$E(income) = \beta_0 + \beta_1 * white + \beta_2 * male$$

$$income_i = \hat{y} + z_i$$

MVN imputation – data augmentation

$$\mu_1 \sum_{1} \longrightarrow \mu_1^* \sum_{1}^*$$

 $E(income) = \beta_0 + \beta_1 * white + \beta_2 * male$ $income_i = \hat{y} + z_i$

$$\mu_2 \Sigma_2 \longrightarrow \mu_2^* \Sigma_2^*$$

Data augmentation example

20% of test scores missing	predicted value	random residual	imputed value
* 0 01 1.1	50.37	-28.57	21.79
$testscore_i^* = \beta_0 + \beta_1 health_i + z_i$	50.48	27.52	78.00
	50.34	-11.68	38.67
	50.14	13.99	64.14
	50.77	-12.51	38.26
	50.13	-5.10	45.03
	50.36	5.53	55.89
	50.11	2.19	52.30
	50.26	-20.04	30.22

	Means		Variances		Covariance
	<u>Health</u> <u>T</u>	est score	<u>Health</u>	Test score	
Complete data	55.4	49.5	883.8	355.1	104.1
iteration 1	55.4	51.2	883.8	353.9	28.6

Data augmentation example

	Mea	Means		Variances	
	<u>Health</u>	Test score	<u>Health</u>	Test score	
Complete data	55.4	49.5	883.8	355.1	104.1
iteration 1	55.4	51.2	883.8	353.9	28.6

	Mea	Means		Variances	
	<u>Health</u>	Test score	<u>Health</u>	Test score	
iteration 1	55.4	51.2	883.8	353.9	28.6
noise added	62.1	38.9	922.2	319.8	45.5

$$testscore_{i}^{*} = \beta_{0} + \beta_{1}health_{i} + z_{i}$$

Data augmentation example

	Means		Variances		Covariance
	<u>Health</u>	Test score	<u>Health</u>	Test score	
Complete data	55.4	49.5	883.8	355.1	104.1
iteration 1	55.4	51.2	883.8	353.9	28.6
iteration 2	55.4	53.0	883.8	378.1	-50.5
iteration 3	55.4	52.2	883.8	354.2	-22.6
iteration 4	55.4	50.1	883.8	336.9	64.4
iteration 5	55.4	51.3	883.8	343.7	12.2

MVN imputation – data augmentation

- constant stream of parameters
- we want to sample from all over the parameter space
- close iterations likely to be correlated
- let model run in between taking imputed data sets

Worst Linear Function

Implications of using MVN imputation

 multivariate normal imputation model can impute strange values, e.g., binary variables with imputed values of 0.3

Observed and Imputed values of admit

Chained Equations

 predict each variable with most appropriate type of regression

logit(married) = $\beta_0 + \beta_1$ age + β_2 race + β_3 religion

poisson(children) = $\beta_0 + \beta_1$ age + β_2 race + β_3 married

Rules for MI

- Include in your imputation equations any variables that:
 - will be used in your final analysis (including the outcome)
 - any variables that predict missingness
 - any variables that are highly correlated with the variables you want to impute (i.e., have lots of information for making good imputations)
- also include any higher order terms that might be of interest (e.g., interactions, squares)
 - failure to do so can bias results towards 0

How many imputations?

 It depends on how much missing information there is

$$FMI = \frac{V_B + V_B / m}{V_T}$$

How many imputations?

 more imputations means more statistical power

$$V_T = V_W + V_B + \frac{V_B}{m}$$

more imputations makes your results more reproducible

rule of thumb – at least as many imputations as the percentage of cases with missing data

What you lose using MI

- In general, "statistics whose value changes systematically with the sample size cannot be combined using Rubin's rules"*
 - e.g., AIC, BIC, likelihood ratio test
- Time

When to Use Multiple Imputation

- Maximize efficiency with MCAR or MAR data
- Descriptive statistics
- Regression missingness depends on Y

Further Reading

References

- https://pictures.dealer.com/b/boardwalkferrari/ 1685/4ef1f5b56b86488255a6c45e8be2ed9bx.jpg
- https://upload.wikimedia.org/wikipedia/commons/ thumb/5/5c/Stata Logo.svg/2000px-Stata Logo.svg.png
- http://worldartsme.com/images/cartoon-hikerclipart-1.jpg
- http://www.clker.com/cliparts/2/f/ 3/9/134557324648652724Park%20by%20the %20Sea.svg
- http://www.animatedimages.org/img-animated-hiking-image-0009-173652.htm